杏彩体育官方平台采用DS18B20和AT89C51设计高精度的多路

 单片机     |      2024-03-30 19:21:43| 来源:杏彩体育app 作者:杏彩体育官网入口

  在实时温度监控系统中,如大棚温度监控、冷库测温、智能建筑温度控制等系统中,经常需要进行多路温度的采集和检测。快速、可靠地采集到高精度温度数据可为控制系统的工作提供可靠的依据。传统上,温度测量方法多以热敏电阻、热电偶等为温度敏感元件,但都存在可靠性差、精度低、需A/D转换以及线路复杂等的缺点。

  本文提出采用美国Dallas 公司生产的单总线单片机构成高精度的多路温度监测系统,在单片机的控制下巡回监测多路温度,高低温度超限报警,并可实现与上位机通讯等功能。

  DSl8B20是Dallas公司推出的1-Wire式单总线智能数字温度传感器。与传统的热敏电阻相比,它能够直接读出被测温度,温度测量范围为-55~125 ℃;可通过编程实现9~12位的转换精度,对应的可分辨温度分别为0.5 ℃,0.25 ℃,0.125 ℃和0.062 5 ℃,可满足高精度设计要求;在9位分辨率时最多在93.75 ms内把温度转换为数字,12位分辨率时最多在750 ms内把温度值转换为数字;电源供电范围3.0~5.5 V;读取或写入信息到DS18B20仅需要单总线接口(即将地址线、数据线、控制线合成一条信号线);测量结果直接输出数字温度信号,串行传送给CPU同时可传送CRC 校验码,具有极强的抗干扰纠错能力;使用DS18B20可使系统结构简洁,可靠性更高。以上特性使得DSl8B20 非常适用于构建高精度的多路温度采集与检测系统。

  系统原理框图如图1 所示,系统由多片DS18B20、AT89C51单片机、LED驱动显示电路、温度上下限设定电路、报警提示电路、串行通信接口、时钟电路、复位电路等构成。

  系统采用8 片DS18B20 构成温度采集电路,8 片DS18B20采用单总线与并行输入相结合的方式接至单片机的P1口。单片机巡回采集各路DS18B20送来的温度信息后,通过软件设计算法,将处理后的温度信息及相应的温度路数通过LED数码管显示出来,各路温度值的上下限可通过P3.2~P3.4独立式键盘进行设定。若某路超过温度设定的上下限将进行通过P3.5或P3.6进行报警提示。此外,可通过串行口RS232 模块将各路温度数据送上位机处理。系统采用Proteus仿真软件设计的仿线所示,此时LED显示的是第3路温度值。

  采用8 片DS18B20 组成多路测温电路。DS18B20内部均有一个全球惟一的64位产品序列号,单片机通过序列号可对一条总线进行控制,读取其温度。但DS18B20仅由单总线采集多路温度数据时,软件设计算法复杂,读取速度慢,无法适用于实时性要求高的测温场合。特别是当单总线个时,采用寄生电源供电方式亦存在总线].为此,本设计采用“单总线结构+并行I/O 口输入”相结合的方式,实时巡回采集多路DS18B20的温度信息。具体做法是:硬件上将8片DS18B20的单总线分别连到单片机的并行P1口引脚,同时各片DS18B20的电源端采用外部电源供电方式,且每个单总线 V电源以保证达到足够的工作电流;软件上读取多路温度与读取单路温度的操作类似,不需读取读出所用DS18B20的序列号,而只需通过参数传递来循环读取各路温度数据(软件设计中介绍)。

  LED显示电路设计:P0口输出显示代码经74LS245驱动后接到8 位LED数码管的段选线 口输出接到LED的位选线位LED数码管用于循环显示通道号及该通道的温度值。

  键盘输入设计:采用独立式键盘P3.2~P3.4用来修改温度报警的上限与下限值。系统默认的温度报警上限为50 ℃,下限为-10 ℃。系统上电后,LED数码管将先后显示温度报警上/下限值。若按P3.2 键报警值加1;若按P3.3键报警值减1;P3.4为确定键,用于保存修改值。

  此外,当系统检测到当前通道温度值超过设定的上、下限时,将通过P3.6,P3.7进行闪光报警提示。

  检测系统可通过串行口与上位机进行通信,向上位机传送温度值及相应的通道号。实物中通过RS 232串行接口与上位机连接,上位机的控制界面由VB 6.0 编写。当运行Proteus软件时,可以从虚拟终端看到上位机接收到的8个通道的温度数据及相应的通道号。

  (2)按键处理子程序:LED 数码管显示上限报警温度值并闪烁,若10 s中之内有按键输入修改温度值,则进行键盘操作直至修改完成,并保存温度上限值;若10 s之内无按键输入或按P3.4“确定”键,则保存上限温度;接着显示下限报警温度值并闪烁,重复上述操作后保存下限报警温度值。

  (3)温度报警值设置子程序:实现将8 路的报警温度写入DS18B20中,流程图详见图4所示。

  (4)读取温度子程序:在对显示路数初始化后,进行温度值读取,这是软件设计的关键,下面将单独介绍。

  (5)温度报警处理:读取某路DS18B20温度值及报警上下限值后,进行比较,若超出范围则启动定时器0,驱动上/下限报警提示单元。

  (6)显示当前通道温度子程序:取得当前通道号后,根据读取的2 字节温度值(温度暂存器格式参考DS18B20技术手册),判断其符号位并分别读取其整数部分和小数部分,通过运算后保存到显示缓冲区,进行动态显示,并刷新显示若干时间。

  (7)上位机通信子程序:每采集一路温度数据,通过RS 232 串口,将其通道号、温度值发送给上位机,完成相应通道的温度数据采集处理。

  采用DS18B20进行单路测量时,可直接与单片机相连,不需读取读出器件的64 位产品序列号。当采用DS18B20进行多路测温时,在初始化操作后,通常的做法是需要在线 位ROM编码以确认各个DS18B20所在位置,并需对ROM编码进行冗余校验,算法设计复杂。且等待多路搜索是否完成需要消耗大量的时间,使程序执行的效率和系统实时性受到了影响。

  本设计采用“单总线结构+并行I/O口输入”结合的方式巡回读取多路温度。DS18B20作为单总线芯片,进行信息交换时有严格的读/写时序要求。读取温度子程序流程如图5所示。首先通过参数传递将通道号传给读取温度子程序,接着对DS18B20进行初始化,然后直接执行跳过ROM命令(CCH),即不读取64位ROM编码而直接向DS18B20发出功能命令,节约了时间。之后,再向DS18B20发送温度转换命令(44H),DS18B20启动温度采样与A/D 转换,并将转换数据存储在暂存器中。

  然后再次初始化DS18B20,并在再一次跳过ROM 命令后,执行单片机读暂存器命令(BEH),根据传递参数确定的通道号,可将通道号对应的DS18B20高速暂存存储器的9个字节数据读入单片机中,其中第0,1字节分别是温度值低位(LS byte)和高位(MS byte),第2,3 字节分别是高温限值(TH)和低温限值(TL),从而完成某通道DS18B20的温度采集。

  软件采用C语言编程,在Keil C51集成开发环境下将编写的程序进行编译、调试[6],并生成目标文件(XX.hex)。

  同时利用嵌入式仿真软件Proteus绘制出电路仿真原理图,CPU 选择AT89C51.双击AT89C51,在出现的对话框中的“Programfile”加入已生成的XX.hex文件,并进行仿真调试,调试成功则可以修改温度报警值,及在正常运行时看到循环显示所采集到的温度值、通道号,仿线 结语

  本设计以Proteus 仿真软件作为开发工具,以AT89C51单片机作为控制核心,使用DS18B20芯片作为温度传感器,加上适当的外围电路,组成了多路温度巡回监测系统。与传统温度传感器相比,可直接输出数字信号而不必考虑A/D转换问题,抗干扰能力与可靠性大大提升。同时,采用单总线与多路并行输入相结合的方法,克服了DS18B20传统上采用单总线结构时所存在的问题,实现多路温度实时读取、巡回监测、与上位机通信等功能,且系统具有结构简洁、精度高、适应性强、维护方便等优点,在多路温度采集与监测领域中有很好的实用价值。

  关键字:引用地址:采用DS18B20和AT89C51设计高精度的多路温度监测系统与进行仿真调试上一篇:以AT89C51单片机为微的汽车转向灯设计

  程序的头文件 #include reg52.h #include intrins.h #include math.h sbit CS=P1^0; sbit SCK=P1^2; sbit SID=P1^1; sbit Key=P1^3; sbit DQ = P2 ^ 7; //定义端口DQ unsigned char code AC_TABLE ={ 0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87, 0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97, 0x88,0x89,0x8a,0x8b,0x8c,0x8d,0x8e,0x8f, 0x98,0x99,0x9a,0x9b,

  射频识别系统主要由阅读器、天线、应答器等硬件设备和数据采集、处理中间件等软件组成。应答器硬件部分在本系统中可具体分为:天线、电源电路、接受和发送电路、控制电路、存储器几部分组成。 下面对组成门禁射频识别系统的应答器电路设计进行介绍。 1.应答器天线的设计 与阅读器天线cm的线圈来代替。要求应答器的天线回路也工作在谐振状态。由电感 2.应答器电源电路的设计 此系统要求应答器为无源的,如前所述整个应答器电路工作所需能最都需从天线获得,因此电源电路的设计就成为应答器设计的关键所在。应答器中及外围电路工作都需要Sv左右直流电源

  设计的门禁系统应答电路 /

  金属氧化物避雷器(MOA)是防止供电系统和用电设备免受雷电危害的主要设施,一旦出现故障,不但失去应有的防雷作用,且可能带来供电事故。因而为确保MOA正常发挥作用,需要在线监测MOA的运行状态。以MOA阀片温度作为故障特征量,设计了基于DS18B20和AT89S52单片机的实时温度监测系统。研究表明,该系统结构合理,方法正确, 可满足应用需求,大幅度减少了MOA维护成本。 避雷器监测中,几乎所有需要测量的变量,包括在正常电压及过电压下的能量吸收,及由于老化和受潮产生的功耗,都会影响MOA阀片的温度。温度不仅是其实际工作状况的间接检测,而且是避雷器本身的精确运行参数。MOA的温度是各种影响参数共同作用的结果,避雷器的能量吸收能力是由温

  远程监控系统设计 /

  这是用1602来显示的,程序是修改前面几个实验的,当温度 40度时电风扇不转,当 =40度时电风扇转动,为参加电子比赛做的单片机系统实验。程序为汇编语言(ASM),带详细注。


杏彩体育官方平台 上一篇:NMOS和PMOS详解 下一篇:基于SJA1000的CAN总线单片机实现运动控制系